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Abstract: O-Borylation of N-propionylsultam 1 provides in situ boryl enolate 6 which, at -7CC in the 
presence of TiC14. reacts with aliphatic. aromatic and a&unsaturated aldehydes giving mostly crystalline, 
diastereomerically pure unri-aldols 3. 

The stereodivergent asymmetric synthesis of either syn-aldols 2 1) or anti-aldols 3 2, by aldolixation of 

the same N-propionylsultam 1 with aromatic and aliphatic aldehydes highlights the exceptional chiral 

efficiency/versatility of the bornane-l0,2-sultam auxiliary (Scheme 1). 
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The configurations of aldols 2 and 3 differ at C(u) (enolate faciality), both being identical at, C(8) 

(carbonyl faciality). Anti-products 3 are valuable building blocks as illustrated by the total synthesis of (-)- 

serricorole (4) 3). 

Recently. it has been shown that the usually syn-selective aldolixations of oxaxolidinone-derived boryl 

enolate 5 can be directed toward mfi-products when carried out in the presence of Et2AICI (3 mol-equiv.) 

4). Anti/syn ratios (implying a reversed C(B)-topicity) range from 8614 to 955 with aliphatic aldehydes but 

drop to 7426 with benxaldehyde. 

In this context it was interesting to explore the aldol condensation of sultam derived boryl enolate 6 in 

the presence of various Lewis acids. Boryl enolate 6 was obtained as usual i.e. by successive treatment of 

N-propionylsultam 1 with (in situ prepared) Et2BOTf and iPr2EtN *) and the influence of various Lewis 

acids on the condensation of non-isolated 6 with propionaldehyde was tested (Scheme 2. Table 1). 
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Table 1: Stereodirecting Effect of Various Lewis Acids on the Aldolixation 

of Boryl Enolate 6 with Propanal in CH7CI7 at -78’. 

Entry Lewis Acid Mol-equiv. Product Ratioa) 

Lewis Acid/EtCHO 3 /2 /(7 + g) 

I Et2AlCl 2 27/37/36 

2 Et2BOTf 2 78/O /22 

3 TiCI 2 9a/o /2 

4 Tic14 I 97/o /3 

5 Tic14 0.5 93/o /7 

l ) HPLC of crude aldol mixture or GC of TBDMS derivatives. 

No reaction was observed in the presence of SnC14 or BF3.0Et2 (2 mol-equiv.). Et2AlCl and Et2BOTf 

accelemted the aldolixation of 6 but with disappointingly poor stereochemical control (entries 1.2). In 

delightful contrast, aldolixation of 6 in the presence of TiC14 yielded wui- product 3, R = Et with excellent 

stereoselectivity which decreased slightly on lowering the amount of TiCI (entries 3-5). The optimized 

procedure (entry 3) involves addition of a mixture of aldehyde (2 mol-equiv.)/TiC14 (4 mol-quiv.) in 

CH2C12 to a stirred solution of in situ prepared boryl enolate 6 at -78’. stirring at -78’ for 0.5 to 4 h and 

aqueous workup. This protocol was applied to a series of aldehydes (Table 2) 5). 

Analysis of the crude product mixtures revealed the predominant formation of ux(i-aldols 3. The major 

product 3 could be routinely (except 3d and 3e) isolated in ~99% purity by crystallixation. Condensation of 

6 with aliphatic aldehydes proceeded smoothly at -78’ with >%% stereoselectivity giving pure ux&aldols 3 

in 73-7796 yield. Only sterically hindered pivalaldehyde required a higher reaction temperature (-4(r) to 

provide a WI0 mixture of 3e/2e; flash chromatography furnished pure product 3c (oil) in 73% yield (entry 

9). 

Benxaldehyde condensed completely with 6 at -78’. the stereoselectivity increased from 928 to WI 

when the TiCl4laldehyde ratio was lowered to I:I (entry II). This lower TiC14/aldehyde mtio also proved 

suitable for the uxri-aldolixation of other aromatic aldehydes such as furfuml and p-nitrobenxaldehyde 

(entries 12.13). However, a second mol-quiv. of TiCI was again employed for the aldolixation of 6 with 

p-methoxybenxaldehyde to accomodate coordination with the methoxy group (entry 14). 
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Table 2 : Asymmetric Anti-Selective Aldolixations of N-Propionylbornane-[l&2]-sultam 1 + 6 -+ 3. 

Entry Series R Mel-equiv. Temp. Time Product/Ratio Yield of 3 Mp. Purity 
TiCIJRCHO TC] PI 3 / 2 /(7 + 8) tryst. [%] [‘Cl WI 

6 a Me- 2 - 78 2 96 2/3 8/Oa) 73 125-126 > 99 

3 b Et- 2 - 78 2 98 ,; /op) II 75-76 > 99 

7 C iPr- 2 - 18 2 99.4/0.6/Oa) 75 146-148 > 99 

8 d ZBU- 2 - 78 1 98.2/1.8/oa*b) 75 oil %.I 

9 e tBu- 2 - 40 15 90 /lO /ob) 73 Oil .99 

10 f cycloC6Hl - l 2 - 78 1 91.1/2.3/ob) 73 128-129 > 99 

II g Ph- 1 - 18 0.5 99 /1 /oa) 17 184-185 > 99 

I2 h 2-furyl- I - 18 0.5 93.115 /].3b) 50 125-127 > 99 

13 I pNG2C6H4- 1 - 78 4 96.4/1.8 /l.ab) 69 174-175 > 99 

14 j pMe=6H4 2 - 78 I 89 /lO /lb) 62 134-135 > 99 

I5 k (E)MeCH-CH- I - 78 I 94 /6 /Ob) 60 94-96 > 99 

16 I CH2=C(Me)- I - 78 I 98 /2 /Ob) 60 115-120 > 99 

a) Major products 3a, 3b, k, 3d and 3g were identified by comparison (IR, ‘H-NMR, m.p., [a]D) with 
authentic samples. Comparison of crude reaction mixtures (HPLC of free aldols or GC of TBDM3 derivatives) 

with authentic 2 and with mixtures 2/3/7/E allowed the assignment of minor products 2a. fb, 2c and 2g and to 
exclude the presence of isomers 7 and 8. b) Major and minor products assigned by analogy to entries 3.6.7 and I I. 

Multiplicity of lH-NMR signal of HA in major product is identical to that of 3a. 3b. 3c. 3d and 30. 

The TiC14 stoichiometry had an even more critical impact on the reaction of 6 with crotonaldehyde. 

Whereas a TiC14/aldehyde ratio of 2:l yielded a 82118 mixture of 1,2- and 1.4-addition products, clean l,2- 

addition was found in the presence of 1 mol-equiv. of TiC14/aldehyde. Crystallization afforded 

synthetically interesting allylic anti-aldol 3k in 60% yield (entry IS) @. Analogous reaction of 6 with 2- 

methyl-2-propenal gave pure olefinic anti-aldol 31 (60%. entry 16) ‘). 

Thus, TiCI mediated aldolixations of aliphatic, aromatic and a&unsaturated aldehydes with boryl 

enolate 6 uniformly proceed with C(a)-Re/C=O-Re topicity as previously observed with the silyl enolate of 

1. An open transition state I*, analogous to that postulated for Mukaiyama aldolixations 1 + 3 2, (Scheme 

1) may be proposed to rationalize this stereochemistry (Scheme 3). 
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Chelation of the enolate and sulfone oxy8en atoms with boron as depicted in open transition state II+ 

should also lead to the same stereochemical preference. In the absence of Tic+, however, boryl enolate 6 

reacts with aldehydes via C(a)-Si/C-0-Rc attack consistent with the closed transition state III* 1). 

The topological influence of Lewis acids on the aldolization of bornanesultam- and oxazolidinone 

derived boryl enolates 6 and 5 4, is clearly quite different. Thus, TiCI alters specifically the enolate 

topicity of 6 but inverts both, the enolate & carbonyl topicities in reactions of 5. Et2AICI. on the other 

hand, effects loss of steric control in reactions of 6 but reverses selectively the carbonyl faciality in 

aldolizations of 5. 

Non-destructive removal of the auxiliary group by cleavage of aldols 3 with LiOH/H202 2). 

propenol/Ti(iPrO)4 8) or with dilithiated methylphenylsulfone 9) provided enantiomerically pure anti-@- 

hydroxylcarbonyl derivatives. 

In conclusion, starting from a &~lg boryl enolate (6) enantiomerically pure unti- or syn-aldols can be 

readily obtained merely as function of the presence or absence of TiCI in the aldolization process. The 

convenience, generality and efficiency of this stereodivergent protocol compares favorably with existing 

methodology 2. 4* 6). 
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