Efficient Asymmetric Synthesis of Anti-Aldols from Bornanesultam Derived Boryl Enolates

Wolfgang Oppolzer^{*} and Philippe Lienard Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: O-Borylation of N-propionylsultam 1 provides in situ boryl enolate 6 which, at -78°C in the presence of TiCl₄, reacts with aliphatic, aromatic and α,β -unsaturated aldehydes giving mostly crystalline, diastereometically pure anti-aldols 3.

The stereodivergent asymmetric synthesis of either syn-aldols 2¹) or anti-aldols 3²) by aldolization of the same N-propionylsultam 1 with aromatic and aliphatic aldehydes highlights the exceptional chiral efficiency/versatility of the bornane-10,2-sultam auxiliary (Scheme 1).

The configurations of aldols 2 and 3 differ at $C(\alpha)$ (enolate faciality), both being identical at $C(\beta)$ (carbonyl faciality). Anti-products 3 are valuable building blocks as illustrated by the total synthesis of (-)-serricorole (4) 3).

Recently, it has been shown that the usually syn-selective aldolizations of oxazolidinone-derived boryl enolate 5 can be directed toward anti-products when carried out in the presence of Et₂AlCl (3 mol-equiv.) ⁴). Anti/syn ratios (implying a reversed $C(\beta)$ -topicity) range from 86:14 to 95:5 with aliphatic aldehydes but drop to 74:26 with benzaldehyde.

In this context it was interesting to explore the aldol condensation of sultam derived boryl enolate 6 in the presence of various Lewis acids. Boryl enolate 6 was obtained as usual *i.e.* by successive treatment of N-propionyl sultam 1 with (*in situ* prepared) Et₂BOTf and iPr_2EtN ¹) and the influence of various Lewis acids on the condensation of non-isolated 6 with propional dehyde was tested (Scheme 2, Table 1).

Table	1:	Stereodia	recti	ng]	Eff	ect of	' Vario	us I	Lew	is	Acids on the	Aldo	liza	tior	1
		of Boryl	Eno	late	6	with]	Propan	al i	n C	H	2Cl ₂ at -78°.				
	_		-									_	•		

Entry	Lewis Acid	Mol-equiv. Lewis Acid/EtCHO	Product Ratioa) 3 /2 /(7 + 8)		
1	Et ₂ AlCi	2	27/37/36		
2	Et ₂ BOTf	2	78/0 /22		
3	TiCl	2	98/0 /2		
4	TiCl	1	97/0 /3		
5	TiCl ₄	0.5	93/0 /7		

•) HPLC of crude aldol mixture or GC of TBDMS derivatives.

No reaction was observed in the presence of SnCl₄ or BF₃.OEt₂ (2 mol-equiv.). Et₂AlCl and Et₂BOTf accelerated the aldolization of 6 but with disappointingly poor stereochemical control (entries 1,2). In delightful contrast, aldolization of 6 in the presence of $TiCl_4$ yielded anti- product 3, R = Et with excellent stereoselectivity which decreased slightly on lowering the amount of TiCl₄ (entries 3-5). The optimized procedure (entry 3) involves addition of a mixture of aldehyde (2 mol-equiv.)/TiCl₄ (4 mol-equiv.) in CH₂Cl₂ to a stirred solution of in situ prepared boryl enolate 6 at ~78°, stirring at -78° for 0.5 to 4 h and aqueous workup. This protocol was applied to a series of aldehydes (Table 2) 5).

Analysis of the crude product mixtures revealed the predominant formation of anti-aldols 3. The major product 3 could be routinely (except 3d and 3e) isolated in >99% purity by crystallization. Condensation of 6 with aliphatic aldehydes proceeded smoothly at -78° with >96% stereoselectivity giving pure anti-aldols 3 in 73-77% yield. Only sterically hindered pivalaldehyde required a higher reaction temperature (-40°) to provide a 90:10 mixture of 3e/2e; flash chromatography furnished pure product 3e (oil) in 73% yield (entry 9).

Benzaldehyde condensed completely with 6 at -78°; the stereoselectivity increased from 92:8 to 99:1 when the TiCl₄/aldehyde ratio was lowered to 1:1 (entry 11). This lower TiCl₄/aldehyde ratio also proved suitable for the anti-aldolization of other aromatic aldehydes such as furfural and p-nitrobenzaldehyde (entries 12,13). However, a second mol-equiv. of TiCl₄ was again employed for the aldolization of 6 with p-methoxybenzaldehyde to accomodate coordination with the methoxy group (entry 14).

Entry	Series	R	Mol-equiv. TiCl4/RCHO	Temp. [°C]	Time [h]	Product/Ratio 3 / 2 /(7 + 8)	Yield of 3 cryst. [%]	М.р. [*С]	Purity [%]
6	8	Me-	2	- 78	2	96.2/3.8/0 ^{a)}	73	125-126	> 99
3	b	Et-	2	- 78	2	98 /2 /0 ⁸⁾	77	75-76	> 99
7	c	<i>i</i> Pr-	2	- 78	2	99.4/0.6/0 ^{a)}	75	146-148	> 99
8	d	iBu-	2	- 78	1	98.2/1.8/0 ^{a,b})	75	oil	96.7
9	e	tBu-	2	- 40	15	90 /10 /0 ^{b)}	73	oil	> 99
10	f	cycloC ₆ H ₁₁	- 2	- 78	1	97.7/2.3/0 ^{b)}	73	128-129	> 99
11	g	Ph-	1	- 78	0.5	99 /1 /0 ^{a)}	77	184-185	> 99
12	h	2-furyl-	1	- 78	0.5	93.7/5 /1.3 ^{b)}	50	125-127	> 99
13	i	pNO2C6H4-	- 1	- 78	4	96.4/1.8 /1.8 ^{b)}	69	174-175	> 99
14	j	pMeOC ₆ H ₄	2	- 78	1	89 /10 /1 ^{b)}	62	134-135	> 99
15	k	(E)MeCH=CH	I - 1	- 78	1	94 /6 /0 ^{b)}	60	94-96	> 99
16	1	CH ₂ =C(Me)	- 1	- 78	1	98 /2 /0 ^{b)}	60	115-120	> 99

Table 2 : Asymmetric Anti-Selective Aldolizations of N-Propionylbornane-[10,2]-sultam $1 \rightarrow 6 \rightarrow 3$.

a) Major products 3a, 3b, 3c, 3d and 3g were identified by comparison (IR, ¹H-NMR, m.p., $[\alpha]_D$) with authentic samples. Comparison of crude reaction mixtures (HPLC of free aldols or GC of TBDMS derivatives) with authentic 2 and with mixtures 2/3/7/8 allowed the assignment of minor products 2a, 2b, 2c and 2g and to exclude the presence of isomers 7 and 8. b) Major and minor products assigned by analogy to entries 3,6,7 and 11. Multiplicity of ¹H-NMR signal of H_A in major product is identical to that of 3a, 3b, 3c, 3d and 3g.

The TiCl₄ stoichiometry had an even more critical impact on the reaction of 6 with crotonaldehyde. Whereas a TiCl₄/aldehyde ratio of 2:1 yielded a 82:18 mixture of 1,2- and 1,4-addition products, clean 1,2addition was found in the presence of 1 mol-equiv. of TiCl₄/aldehyde. Crystallization afforded synthetically interesting allylic *anti*-aldol 3k in 60% yield (entry 15) ⁶). Analogous reaction of 6 with 2methyl-2-propenal gave pure olefinic *anti*-aldol 31 (60%, entry 16) ⁷).

Thus, TiCl₄ mediated aldolizations of aliphatic, aromatic and α,β -unsaturated aldehydes with boryl enolate 6 uniformly proceed with C(α)-Re/C=O-Re topicity as previously observed with the silyl enolate of 1. An open transition state I[#], analogous to that postulated for *Mukaiyama* aldolizations $1 \rightarrow 3^{2}$ (Scheme 1) may be proposed to rationalize this stereochemistry (Scheme 3).

Chelation of the enolate and sulfone oxygen atoms with boron as depicted in open transition state II^{\neq} should also lead to the same stereochemical preference. In the absence of TiCl₄, however, boryl enolate 6 reacts with aldehydes via C(α)-Si/C=O-Re attack consistent with the closed transition state III^{\neq} 1).

The topological influence of Lewis acids on the aldolization of bornanesultam- and oxazolidinone derived boryl enolates 6 and 5⁴) is clearly quite different. Thus, $TiCl_4$ alters specifically the enolate topicity of 6 but inverts both, the enolate and carbonyl topicities in reactions of 5. Et_2AlCl , on the other hand, effects loss of steric control in reactions of 6 but reverses selectively the carbonyl faciality in aldolizations of 5.

Non-destructive removal of the auxiliary group by cleavage of aldols 3 with LiOH/H₂O₂²⁾, propenol/Ti(iPrO)₄⁸⁾ or with dilithiated methylphenylsulfone ⁹⁾ provided enantiomerically pure *anti-β*-hydroxylcarbonyl derivatives.

In conclusion, starting from a <u>single</u> boryl enolate (6) enantiomerically pure *anti*- or *syn*-aldols can be readily obtained merely as function of the presence or absence of $TiCl_4$ in the aldolization process. The convenience, generality and efficiency of this stereodivergent protocol compares favorably with existing methodology 2, 4, 6).

<u>Acknowledgements</u>: Financial support of this work by the Swiss National Science Foundation, Sandoz Pharma Ltd., Basel and Givaudan-Roure AG, Dübendorf, is gratefully acknowledged. We thank Mr. J. P. Saulnier, Mr. A. Pinto and Mrs. C. Clément for NMR and MS measurements.

REFERENCES AND NOTES

- W. Oppolzer, J. Blagg, I. Rodriguez, E. Walther, J. Am. Chem. Soc. 1990, 112, 2767. The reaction 1 → 2 was routinely carried out using 2-3 mol-equiv. of aldehyde. Unfortunately due to a misunderstanding an error has crept into the literature, namely the claim that 5 mol-equiv. of aldehyde are required for complete conversion: D. A. Evans, D. L. Rieger, M. T. Bilodeau. F. Urpi. J. Am. Chem. Soc. 1991, 113, 1047.
- 2) W. Oppolzer, C. Starkemann, I. Rodriguez, G. Bernardinelli, Tetrahedron Lett. 1991, 32, 61.
- 3) W. Oppolzer, I. Rodriguez, Helv. Chim. Acta 1993, 76, 1275.
- 4) M. A. Walker, C. H. Heathcock, J. Org. Chem. 1991, 56, 5747.
- 5) All new compounds were characterized by IR, ¹H-NMR, ¹SC-NMR and MS. The following procedure is representative: CF_3SO_3H (243 µl, 2.76 mmol) was added to a 1<u>M</u> soln. of Et₃B in hexane (2.76 ml) at r.t. and the mixture was stirred at 40°C (until gas evolution has ceased). Successive addition of a soln. of propionylsultam 1 (300 mg, 1.1 mmol) in CH_2Cl_2 (6 ml) and a 1<u>M</u> soln. of (*i*Pr)₂EtN in CH_2Cl_2 (2.97 ml) at -10°C and stirring at -10°C for 30 min. gave a soln. of boryl enolate 6 which was cooled to -78°C and cannulated into a soln. of propanal (160 µl, 2.2 mmol) and TiCl₄ (480 µl, 4.4 mmol) in CH_2Cl_2 (3 ml) at -78°C. Stirring the mixture at -78°C for 2 h, addition of sat. aq. NH_4Cl , extraction (CH_2Cl_2) , flash chromatography (hexane/EtOAc 4:1) and crystallization (Et₂O/pentane) furnished aldol 3b (280 mg, 77%), m.p. 75-76°C.
- 6) TiCl₄-mediated aldolization of the silvl enolate of 1 with crotonaldehyde gave aldol 3k in 47% yield.
- Acrolein condensed with 6 in the presence of TiCl₄ (1 mol-equiv./aldehyde) to give an inseparable 80:20 mixture of aldol/Michael addition products.
- 8) W. Oppolzer, P. Lienard, Helv. Chim. Acta 1992, 75, 2572.
- 9) W. Oppolzer, I. Rodriguez, Helv. Chim. Acta 1993, 76, 1282.

(Received in Germany 27 April 1993)