Efficient Asymmetric Synthesis of Anti-Aldols from Bornanesultam Derived Boryl Enolates

Wolfgang Oppolxer* and Philippe Lienard Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: O-Borylation of N-propionylsultam 1 provides *in situ* boryl enolate 6 which, at -78°C in the presence of TiCl₄, reacts with aliphatic, aromatic and α, β -unsaturated aldehydes giving mostly crystalline, diastereomerically pure *anti*-aldols 3.

The stereodivergent asymmetric synthesis of either syn-aldols 2¹) or *anti*-aldols 3²) by aldolization of **the same N-propionylsultam 1 with aromatic and aliphatic aldehydes highlights the exceptional chiral efficiency/versatility of the bornane-l0,2-sultam auxiliary (Scheme 1).**

The configurations of aldols 2 and 3 differ at $C(\alpha)$ (enolate faciality), both being identical at $C(\beta)$ **(carbonyl faciality). Anti-products 3 are valuable building blocks as illustrated by the total synthesis of (-) serricorole (4) 3).**

Recently, it has been shown that the usually syn-selective aldolizations of oxazolidinone-derived boryl enolate 5 can be directed toward *anti-products* when carried out in the presence of Et₂AlCl (3 mol-equiv.) **4).** *Anti/syn* **ratios (implying a reversed C(B)-topicity) range from 8614 to 955 with aliphatic aldehydes but drop to 7426 with benxaldehyde.**

In this context it was interesting to explore the aldol condensation of sultam derived boryl enolate 6 in the presence of various Lewis acids. Boryl enolate 6 was obtained as usual *i.e.* **by successive treatment of** N -propionylsultam 1 with *(in situ* prepared) Et₂BOTf and iPr_2E tN ¹) and the influence of various Lewis **acids on the condensation of non-isolated 6 with propionaldehyde was tested (Scheme 2. Table 1).**

Entry	Lewis Acid	Mol-equiv. Lewis Acid/EtCHO	Product Ration $3/2/(7+8)$
	Et ₂ AICI	2	27/37/36
2	Et ₂ BOTf	2	78/0 /22
3	TiCl ₄	2	98/0 /2
4	TiCl ₄		97/0/3
5	TiCl ₄	0.5	93/0 /7

Table 1: Stereodirecting Effect of Various Lewis Acids on the Aldolixation of Boryl Enolate 6 with Propanal in CH₂Cl₂ at -78°.

l **) HPLC of crude aldol mixture or GC of TBDMS derivatives.**

No reaction was observed in the presence of SnCl₄ or BF₃.OEt₂ (2 mol-equiv.). Et₂AlCl and Et₂BOTf **accelemted the aldolixation of 6 but with disappointingly poor stereochemical control (entries 1.2). In** delightful contrast, aldolization of 6 in the presence of $TiCl₄$ yielded *anti*- product 3, R = Et with excellent stereoselectivity which decreased slightly on lowering the amount of TiCl₄ (entries 3-5). The optimized procedure (entry 3) involves addition of a mixture of aldehyde (2 mol-equiv.)/TiCl₄ (4 mol-equiv.) in CH₂Cl₂ to a stirred solution of *in situ* prepared boryl enolate 6 at -78°, stirring at -78° for 0.5 to 4 h and **aqueous workup. This protocol was applied to a series of aldehydes (Table 2) 5).**

Analysis of the crude product mixtures revealed the predominant formation of anti-aldols 3. The major **product 3 could be routinely (except 3d and 3e) isolated in ~99% purity by crystallixation. Condensation of** 6 with aliphatic aldehydes proceeded smoothly at -78° with >96% stereoselectivity giving pure anti-aldols 3 in 73-77% yield. Only sterically hindered pivalaldehyde required a higher reaction temperature (-40°) to **provide a WI0 mixture of 3e/2e; flash chromatography furnished pure product** *3c* **(oil) in 73% yield (entry 9).**

Benzaldehyde condensed completely with 6 at -78[°]; the stereoselectivity increased from 92:8 to 99:1 when the TiCl_a/aldehyde ratio was lowered to 1:1 (entry 11). This lower TiCl_a/aldehyde ratio also proved suitable for the anti-aldolization of other aromatic aldehydes such as furfural and p-nitrobenzaldehyde (entries 12,13). However, a second mol-equiv. of TiCl₄ was again employed for the aldolization of 6 with **p-methoxybenxaldehyde to accomodate coordination with the methoxy group (entry 14).**

Entry	Series	R	Mol-equiv. TiCl ₄ /RCHO	Temp. [°C]	Time [h]	Product/Ratio $3 / 2 / (7 + 8)$ cryst. [%]	Yield of 3	M.p. Γ C]	Purity [%]
6		Me-	2	-78	$\overline{2}$	$96.2/3.8/0^{2}$	73	125-126	> 99
3	ь	$Et-$	$\mathbf{2}$	-78	$\mathbf{2}$	98 $/2$ $/0^{a}$	77	$75 - 76$	> 99
\overline{z}	c	iPr-	2	-78	$\overline{2}$	$99.4/0.6/0^{a}$	75	$146 - 148$	> 99
8	d	iBu-	2	-78	1	$98.2/1.8/0^{a,b}$	75	oil	96.7
9	e	tBu-	2	-40	15	90 /10 /0 ^{b)}	73	oil	> 99
10	f	$cycloC6H11$ -	2	-78		$97.7/2.3/0^{b}$	73	128-129	> 99
$\boldsymbol{\mathit{ii}}$	s.	Ph-		-78	0.5	99 /1 /0 ^{a)}	77	184-185	> 99
12	ħ	2 -furvl-		-78	0.5	93.7/5 $/1.3^{b}$	50	125-127	> 99
13		pNO ₂ C ₆ H ₄ -		-78	4	$96.4/1.8 / 1.8^{b}$	69	174-175	> 99
14		p MeOC6H4	2	- 78		(10/1 ^b) 89	62	134-135	> 99
15	k	(E) MeCH-CH-		-78	1	/0 ^b /6 94	60	$94 - 96$	> 99
16		$CH2=C(Me)$ -		-78		(0 ^b) /2 98	60	115-120	> 99

Table 2: Asymmetric Anti-Selective Aldolizations of N-Propionylbornane-[10,2]-sultam $1 \rightarrow 6 \rightarrow 3$.

a) Major products 3a, 3b, 3c, 3d and 3g were identified by comparison (IR, 1 H-NMR, m.p., [α]_D) with authentic samples. Comparison of crude reaction mixtures (HPLC of free aldols or GC of TBDMS derivatives) with authentic 2 and with mixtures $2/3/7/8$ allowed the assignment of minor products $2a$, $2b$, $2c$ and $2g$ and to exclude the presence of isomers 7 and 8. b) Major and minor products assigned by analogy to entries 3,6,7 and 11. Multiplicity of 1 H-NMR signal of H_A in major product is identical to that of 3a, 3b, 3c, 3d and 3g.

The $TiCl₄$ stoichiometry had an even more critical impact on the reaction of 6 with crotonaldehyde. Whereas a TiCl₄/aldehyde ratio of 2:1 yielded a 82:18 mixture of 1,2- and 1,4-addition products, clean 1,2addition was found in the presence of 1 mol-equiv. of TiCl_a/aldehyde. Crystallization afforded synthetically interesting allylic *anti*-aldol 3k in 60% yield (entry 15) $\overline{6}$). Analogous reaction of 6 with 2methyl-2-propenal gave pure olefinic anti-aldol 31 (60%, entry 16) (7) .

Thus, TiCl₄ mediated aldolizations of aliphatic, aromatic and α , β -unsaturated aldehydes with boryl enolate 6 uniformly proceed with $C(\alpha)$ -Re/C=O-Re topicity as previously observed with the silyl enolate of 1. An open transition state I^{*}, analogous to that postulated for *Mukaiyama* aldolizations $1 \rightarrow 3$ ²) (Scheme 1) may be proposed to rationalize this stereochemistry (Scheme 3).

Chelation of the enolate and sulfone oxygen atoms with boron as depicted in open transition state II^{\neq} should also lead to the same stereochemical preference. In the absence of $TiCl_A$, however, boryl enolate 6 reacts with aldehydes *via* $C(\alpha)$ -Si/C=O-Re attack consistent with the closed transition state III^{*} 1).

The topological influence of Lewis acids on the aldolization of bornanesultam- and oxazolidinone derived boryl enolates 6 and 5 4) is clearly quite different. Thus, $TiCl₄$ alters specifically the enolate topicity of 6 but inverts both, the enolate and carbonyl topicities in reactions of 5. Et₂AlCl, on the other hand, effects loss of steric control in reactions of 6 but reverses selectively the carbonyl faciality in aldolizations of 5.

Non-destructive removal of the auxiliary group by cleavage of aldols 3 with $LiOH/H₂O₂$ 2). propenol/Ti(iPrO)₄⁸⁾ or with dilithiated methylphenylsulfone ⁹) provided enantiomerically pure *anti-* β hydroxylcarbonyl derivatives.

In conclusion, starting from a single boryl enolate (6) enantiomerically pure *anti-* or *syn-aldols* can be readily obtained merely as function of the presence or absence of $TiCl₄$ in the aldolization process. The convenience, generality and efficiency of this stereodivergent protocol compares favorably with existing methodology $2, 4, 6$.

Acknowledgements: Financial support of this work by the *Swiss National Science Foundation, Sandoz* Pharma Ltd., Basel and *Givaudan-Roure AG*, Dübendorf, is gratefully acknowledged. We thank Mr. J. P. *Saulnier,* Mr. A. *Pinto* and Mrs. C. *Clbment* for NMR and MS measurements.

REFERENCES AND NOTES

- 1) W. Oppolzer, J. Blagg, I. Rodriguez, E. Walther, J. Am. Chem. Soc. 1990, 112, 2767. The reaction $1 \rightarrow 2$ was routinely carried out using 2-3 mol-equiv. of aldehyde. Unfortunately due to a misunderstanding an error has crept into the literature, namely the claim that 5 mol-equiv. of aldehyde are required for complete conversion: D. A. Evans, D. L. Rieger, M. T. Bilodeau. F. Urpi. J. Am. Chem. Soc. 1991, 113, 1047.
- 2) W. Oppolzer, C. Starkemann. I. Rodriguez. G. Bernardinelli, *Tetrahedron Lett. 1991. 32, 61.*
- *3)* W. Oppolzer. I. Rodriguez, *Helv. Chim. Acta 1993. 76, 1275.*
- *4) M.* A. Walker, C. H. Heathcock. J. *Org.* Chem. 1991. 56, 5747.
- 5) All new compounds were characterized by IR, 1H-NMR, ¹³C-NMR and MS. The following procedure is representative: CF₃SO₃H (243 μ l, 2.76 mmol) was added to a 1M soln. of Et₃B in hexane (2.76 ml) at **r.t. and the mixture was stirred at 4O'C (until gas evolution has ceased). Successive addition of a soln.** of propionylsultam 1 (300 mg, 1.1 mmol) in CH₂Cl₂ (6 ml) and a 1M soln. of $(iPr)_2$ EtN in CH₂Cl₂ (2.97 **ml) at -1O'C and stirring at -1o'C for 30 min. gave a soln. of boryl enolate 6 which was cooled** to -78°C and cannulated into a soln. of propanal (160 μ l, 2.2 mmol) and TiCl_d (480 μ l, 4.4 mmol) in CH₂Cl₂ (3 ml) at -78°C. Stirring the mixture at -78°C for 2 h, addition of sat. aq. NH₄Cl, extraction (CH₂Cl₂), flash chromatography (hexane/EtOAc 4:1) and crystallization (Et₂O/pentane) furnished aldol **3b (280 mg, 77%).** m.p. **75-76C.**
- 6) **TiC14-mediated aldolixation of the silyl enolate of** 1 **with crotonaldehyde gave aldol 3k in 47% yield.**
- 7) Acrolein condensed with 6 in the presence of TiCl₄ (1 mol-equiv./aldehyde) to give an inseparable 80:20 mixture of aldol/Michael addition products.
- 8) W. Oppolzer, P. Lienard, *Helv. Chim. Acta 1992, 75, 2572.*
- 9) **W.** Oppolzer. I. Rodriguez, *Helv. Chim. Acta 1993,* **76, 1282.**

(Received in Germany 27 April 1993)